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ABSTRACT

A new time-domain method for the analysis of guided

wave propagation and scattering is developed in which an
analytical process is incorporated along one of the three

dimensions in space, so that the problem is effectively reduced
to a two-dimensional one. A simple numerical example is

presented as a demonstration of the new method.

INTRODUCTION

The time-domain analysis of microwave planar

transmission structures provides an alternative to the frequency

domain approach, and is also useful for studying the behavior

of pulsed signals in structures such as high speed digital

circuits. A typical time-domain analysis requires discretization

of a three-dimensional space into a three-dimensional mesh.

Usually, a large computer storage and a long computation time

are required. An additional problem of these methods is the

difficulty in handling open boundaries.

OUTLINE OF THE PROPOSED METHOD

The proposed method originates from the fact that most of

the discontinuities appearing in the planar transmission

structures are located on the substrate surface and the space

below and above this surface is uniform and homogeneous.

We wish to solve the problem by discretizing only in a two
dimensional surface on the substrate where the discontinuity is
located. This is possible if the wave scattering information in
the direction perpendicular to the substrate surface is available
analytically. The proposed method actually incorporate this
process. The method is somewhat similar to the frequency
domain analysis called the method of lines [1].

The method entails discretization of the structure by a

number of lines perpendicular to the substrate surface as shown
in Fig. 1. At the specified time, the field distribution at each
intersection of these lines with the substrate surface is
calculated by Maxwell’s equations discretized only in the x and
z directions that are parallel to the substrate surface. The field
information in the y direction is obtained analytically at each
point and time. This information can be found from the inverse
Fourier transform of the solution of the frequency domain
Helmholtz equation in the y direction.
One may wonder as to what is happening to the wave scattering

phenomena that is taking place everywhere in the waveguide,
not only on the substrate surface. This question is natural,
because in other time domain methods the electromagnetic
fields at one mesh point interact with those at all six
neighboring mesh points in x, y and z directions. In the
proposed method, the fields at any point on one discretization
line do not appear to interact with those on a similar point on
another line. It should be emphasized that this is not the case.
As we will see shortly, a spatial transformation is introduced
by which the field as a function of (discretized) x and z is
transformed to another discretized quantity which contains the
field quantities at all x and z values. The analytical information
in the y direction is then applied to this transformed quantity.
Since analytical expressions are used for the field variation in
the y direction, this method can easily handle the case where
the top wall is removed, whereby the structure is open in they
direction.

A SIMPLE EXAMPLE FOR A TWO-DIMENSIONAL
PROBLEM

Let us consider a simple two-dimensional structure as a test
case. The formulation for such a structure is simplified, yet it
contains all essential features of the proposed method. As
shown in Fig.2, the problem is a partially filled rectangular
waveguide excited by an electric field, Ez, infinite in length and

uniform in the z (axial) direction. The problem is now a
two-dimensional one. This problem corresponds to finding the
cutoff frequencies of various TM modes in the frequency
domain [2]. Such information can be extracted from the time
domain data.

Because of the excitation, only Ez, Hx and Hy exist and

WIz = O. The time-domain equations are discretized in the
x-direction only.

-P a[Hxl/ ats a[Ezli ay (la)

-W dHyl / at = [Dxel [Ezl / AX (lb)

&(y) 8[EZ] / at = [Dxh] [Hy] / Ax - 8[HX] / ay (lC)

[Dxxe][Ez] / (kc)2 + 82[EZ] / 82y - ~(y) #[Ez] / t32t = O

(Id)

where [Dxe], [Dxh], [Dxxe] are difference operators in which

the side wall boundary condition is incorporated [1]. The
variables [Ez], [Hx] and [H ] are the column vectors

Y
representing the fields along each line and are functions of y

e] is a red symmetric matrix, there exists aand t. Since [Dxx
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real orthogonal matrix [Txe] that transforms [Dxxe] into a

diagonal matrix [dxxe]. We can now transform [Ez], etc. into

a transform @z] = [Txe]t[Ez] etc.where the superscript t stands

for transpose. The transform of the equation (l-d) is

(1/Ax)2[dxxe][Ez] + 132[EZ] / ~2y - W(y) i12[Ez] / ~2t = O (2)

Notice that (2) is a set of uncoupled partial differential
equations, that is, it can be solved independently along the i-th
line. Using the separation of variable technique, one can obtain
a typical Sturm-Liouville differential equation for the y
dependant solution. The solution for the i-th line is

Ezi(y, t) = & (Ani COS @nit + Bni sin @nit) sin Klni(b-y)

for re~i~

~n (Ani cos @nit + Bni sin ~nit) (sin Klnid /

sin K2nih) sin K2niy for region II (3)

where Klni, K2ni, ~d @ni are determined by the characteristic

transcendental equation

Klni cos Klnid sin K2nih + K2ni sin Klnid COS K2nih = O
(4)

[(Klni)2 - dxxie / (Ax)21/ I-El =

[(K2ni)2 - dxxie / (Ax)21/ 1.E2 (5I

(6)@ni2 = [(Klni)2 - dxxie / (Ax)2] / WI

From this point on, there are basically two approaches. By
knowing the initial conditions for Ez and its time derivative,

one can find Ani and Bni. Then, the solution at any point at

any time can be extracted from the inverse transform via ~z(y,

t)] = [Txel[Ez(Y, t)].
An alternative method is an application of the time stepping

procedure. From the initial condition for Ez, one can fiid Ani

at time t = O in the equation (3) which will be called AniN with

N = O. With the causality condition, the transforms of (la) -
(1 c) can be discretized in time as a time stepping iteration.
Expressing the solution (3) in the form

EziN(y)=ZnAnlN sin Klni(b-y) in re tion I

& AniN (sin Klnid / sin K2nih) sin K2niy

in retion II (7)

and a similar one for Hxi and Hfi at the time (N + 1/2), one

can implement a leap-flog type iteration scheme to calculate
these coefficients. The real field at y = y. at the N-th time step

can be obtained by invoking the inverse transformation as
described above to [EZ]N.

RESULTS AND DISCUSSION

cross section. Figure 4 shows the spectrum of the time signal
for Ez where the waveguide cutoff frequencies are represented

by th; peaks. The results differ by less than one percent from
the analytical values.

It should be noted that the two methods described above
should be equivalent in principle. However, each has
advantages and disadvantages. For instance, if one deals with
a time-spread excitation, the time stepping method would be
simpler to implement. Otherwise, the fiist method is more
efficient as long as only the results at a particular time are of
interest. However, if any frequency domain information is
needed, the time history needs to be found. The f~st method
needs to be used at many time instances. The time stepping
method automatically generates the time history. Hence, the
amount of computation would be about the same. In many
cases, there are ambiguities in fiiding the time derivative of the
initial condition. In such instances, it may be simpler to use
time stepping to generate the time history required. It should
be noted that switching from one method to the other is quite

possible.

CONCLUSIONS

A new time domain technique is presented in which an
analytical process is incorporated along one of the spatial
dimensions so that the dimensions of the problem are
effectively reduced by one. The present approach can be used
to calculate the cutoff frequency of the other planar
transmission structures and can be extended to the propagation
problems. It has a number of potential advantages over many
other time domain methods. First, the method is believed to be
efficient since much analytical processing is used. Second, the
problem can handle open boundaries in the vertical (y) direction
because of the analytical solutions used in y.
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The accompanying figures are results of sample
calculations. Figure 3 depicts the Ez field distributions in the

waveguide cross section (x-y plane) at each time step after a
pulsed Ez excitation is imposed at t = O at the center of the
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Fig. 1 Typical planar transmission line structure with a
discontinuity and its discretization example for the
analysis.

Fig. 3

A (a)

(c)
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Fig. 2 Partially fiiled rectangulw waveguide structure.

(b)

(d)

Pictures of the distribution of Ez field at various times. ( a = 2, b = 1, h = 0.2 [cm],

&l=l, and&2=3)

(a) t = O, (b) t = 20, (c)t= 40, and (d) t = 60 [pico-see]
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Fig. 4

.m

.m

.7

!

.W

.m

5 .’
1

(a)

(c)

.1 WJkJ!44.,,.,,..
20 2s *O Ss
rneauwGY Conza

(d)

Cutoff frequency spectrum for the structure shown in fig.2 ( a = 2, b = 1, h = 0.2 [cm],

&l=l, and~=3)

(a) TMII, (b) TM31, (c) TM12, ~d (d) ~32 etc.
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